Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^2} + \left( {m - 2} \right)x - 8 = 0\) (1), với \(m\) là tham số.

Cho phương trình \({x^2} + \left( {m - 2} \right)x - 8 = 0\) (1), với \(m\) là tham số.

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Giải phương trình (1) khi \(m = 4\).

Đáp án đúng là: D

Câu hỏi:532137
Phương pháp giải

Thay \(m = 4\) phương trình \(\left( 1 \right)\)

Tính \(\Delta  = {b^2} - 4ac\) (hoặc \(\Delta ' = {\left( {b'} \right)^2} - ac\)), sử dụng công thức nghiệm của phương trình bậc hai một ẩn: \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta  }}{{2a}}\) (hoặc \({x_{1,2}} = \dfrac{{ - b' \pm \sqrt {\Delta '} }}{a}\)), tính được nghiệm của phương trình, kết luận.

Giải chi tiết

a) Thay \(m = 4\) vào phương trình (1) ta được: \({x^2} + 2x - 8 = 0\)

Ta có: \(\Delta ' = 1 + 8 = 9 = {3^2} > 0\) nên phương trình có hai nghiệm phân biệt: \(\left[ \begin{array}{l}{x_1} =  - 1 + \sqrt 9  = 2\\{x_2} =  - 1 - \sqrt 9  =  - 4\end{array} \right.\)

Vậy phương trình có tập nghiệm \(S = \left\{ { - 4;2} \right\}\).

Đáp án cần chọn là: D

Câu hỏi số 2:
Vận dụng

Tìm \(m\) để phương trình có hai nghiệm \({x_1},\,\,{x_2}\) sao cho biểu thức \(Q = \left( {{x_1}^2 - 1} \right)\left( {{x_2}^2 - 1} \right)\) đạt giá trị lớn nhất.

Đáp án đúng là: D

Câu hỏi:532138
Phương pháp giải

Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt \(\Delta  > 0\) (hoặc \(\Delta ' > 0\))

Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(m\)

Biến đổi, rút gọn biểu thức \(Q\), sử dụng hằng đẳng thức tìm được giá trị lớn nhất của \(Q\).

Giải chi tiết

Phương trình (1) có: \(\Delta  = {\left( {m - 2} \right)^2} + 32 > 0\,\,\,\forall m\) nên phương trình (1) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\).

Khi đó theo Vi-ét ta có: \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} =  - m + 2}\\{{x_1}.{x_2} =  - 8}\end{array}} \right.\)

Ta có:

\(\begin{array}{l}Q = \left( {{x_1}^2 - 1} \right)\left( {{x_2}^2 - 1} \right)\\\,\,\,\,\, = {x_1}^2{x_2}^2 - \left( {{x_1}^2 + {x_2}^2} \right) + 1\\\,\,\,\, = {x_1}^2{x_2}^2 - {\left( {{x_1} + {x_2}} \right)^2} + 2{x_1}{x_2} + 1\end{array}\)

\( \Rightarrow Q = 64 - {\left( { - m + 2} \right)^2} - 16 + 1 =  - {\left( { - m + 2} \right)^2} + 49 \le 49\,\,\,\forall m\).

Vậy \({Q_{\max }} = 49\). Dấu “=” xảy ra khi \(m = 2\).

Vậy giá trị lớn nhất của Q bằng 49 khi \(m = 2\).

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com