Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = a{x^2}.\)a) Xác định hệ số \(a\) biết rằng đồ thị của hàm số cắt đường

Câu hỏi số 536312:
Vận dụng

Cho hàm số \(y = a{x^2}.\)

a) Xác định hệ số \(a\) biết rằng đồ thị của hàm số cắt đường thẳng \(y = 2x\) tại điểm \(A\)có hoành độ bằng \(1.\)

b) Vẽ đồ thị của hàm số \(y = 2x\) và đồ thị của hàm số \(y = a{x^2}\) với giá trị \(a\) vừa tìm được ở câu \(a)\) trên cùng một mặt phẳng tọa độ.

c) Dựa vào đồ thị, hãy xác định tọa độ giao điểm thứ hai ( khác \(A\)) của hai đồ thị vừa vẽ trong câu \(b).\)

Quảng cáo

Câu hỏi:536312
Phương pháp giải

a) Xét phương trình hoành độ giao điểm, ta có được phương trình (1)

Từ giả thiết thì \(x = 1\) là nghiệm của phương trình (1), do đó thay \(x = 1\) vào phương trình (1), ta tìm được hệ số \(a\).

b) Vẽ đồ thị của hàm số \(y = ax + b\)

+ Lập bảng giá trị tương ứng của \(x\) và \(y\)

+ Xác định được các điểm mà đồ thị đi qua, vẽ đồ thị.

Vẽ đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)

+ Nhận xét về hệ số \(a\) và sự biến thiên của hàm số

+ Lập bảng giá trị tương ứng của \(x\) và \(y\)

+ Xác định được các điểm mà đồ thị đi qua, vẽ đồ thị.

c) Từ đồ thị vừa vẽ được, ta đọc được giao điểm còn lại còn tìm.

Giải chi tiết

a) Xét phương trình hoành độ giao điểm: \(a{x^2} - 2x = 0\) \(\left( 1 \right)\)

Do đồ thị hàm số \(y = a{x^2}\) cắt đường thẳng \(y = 2x\) tại điểm có hoành độ bằng \(1\) nên ta có \(x = 1\) là một nghiệm của phương trình \(\left( 1 \right)\).

Thay \(x = 1\) vào phương trình \(\left( 1 \right)\) ta có: \(a - 2 = 0 \Leftrightarrow a = 2.\)

Vậy \(a = 2\).

b) + Vẽ đồ thị hàm số \(y = 2x\)

Ta có bảng giá trị:

Do đó đồ thị hàm số \(y = 2x\) là đường thẳng đi qua hai điểm \(\left( {0;0} \right)\) và \(\left( {1;2} \right)\).

+ Vẽ đồ thị hàm số \(y = 2{x^2}\).

Đồ thị hàm số bậc hai và có hệ số \(a = 2 > 0\) nên có đồ thị có dạng Parabol và có bề lõm hướng lên trên.

Hàm số đồng biến khi \(x > 0\) và nghịch biến khi \(a < 0\).

Ta có bảng giá trị:

Do đó đồ thị hàm số \(y = 2{x^2}\) là đường cong đi qua các điểm \(\left( { - 2;8} \right)\), \(\left( { - 1;2} \right)\), \(\left( {0;0} \right)\), \(\left( {1;2} \right)\), \(\left( {2;8} \right)\).

+ Vẽ đồ thị hàm số:

c) Dựa vào đồ thị trên, ta nhận thấy đồ thị hàm số \(y = 2{x^2}\) cắt đồ thị hàm số \(y = 2x\) tại hai điểm có hoành độ là \(x = 0\) và \(x = 1\).

Vậy giao điểm thứ hai khác \(A\) của hai đồ thị hàm số là \(B\left( {0;0} \right)\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com