Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải bài toán bằng cách lập phương trình hoặc hệ phương trìnhQuãng đường \(AB\) gồm một

Câu hỏi số 536313:
Vận dụng

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình

Quãng đường \(AB\) gồm một đoạn lên dốc dài 5 km và một đoạn xuống dốc dài 10 km. Một người đi xe đạp từ \(A\) đến \(B\) hết 1 giờ 10 phút và đi từ \(B\) về \(A\) hết 1 giờ 20 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc, xuống dốc của người đi xe đạp.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:536313
Phương pháp giải

Gọi vận tốc lúc lên dốc của người đó là \(x\left( {km/h} \right)\,\,\,\left( {x > 0} \right)\) và vận tốc lúc xuống dốc là \(y\left( {km/h} \right)\,\,\,\left( {y > x} \right)\)

Tính được thời gian lúc đi lên dốc và xuống dốc của người đó, có giả thiết lúc đi của người đó từ đó lập được phương trình (1)

Tính được thời gian lúc về lên dốc và xuống dốc của người đó, có giả thiết lúc về của người đó từ đó lập được phương trình (2)

Từ phương trình (1) và (2), lập được hệ phương trình.

Giải hệ phương trình bằng phương pháp đặt ẩn phụ.

Giải chi tiết

Đổii: 1 giờ 10 phút =\(\dfrac{7}{6}\left( h \right)\)

       1 giờ 20 phút \( = \dfrac{4}{3}\left( h \right)\)

Gọi vận tốc lúc lên dốc của người đó là \(x\left( {km/h} \right)\,\,\,\left( {x > 0} \right)\)

      Vận tốc lúc xuống dốc là \(y\left( {km/h} \right)\,\,\,\left( {y > x} \right)\)

Lúc đi: Thời gian lên dốc là \(\dfrac{5}{x}\left( h \right)\), xuống dốc là \(\dfrac{{10}}{y}\left( h \right)\)

Tổng thời gian đi hết 1 giờ 10 phút nên ta có phương trình: \(\dfrac{5}{x} + \dfrac{{10}}{y} = \dfrac{7}{6}\,\,\,\,\left( 1 \right)\)

Lúc về: Thời gian lên dốc là \(\dfrac{{10}}{x}\left( h \right)\), xuống dốc là \(\dfrac{5}{y}\left( h \right)\).

Tổng thời gian về hết 1 giờ 20 phút nên ta có phương trình: \(\dfrac{{10}}{x} + \dfrac{5}{y} = \dfrac{4}{3}\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\dfrac{5}{x} + \dfrac{{10}}{y} = \dfrac{7}{6}\\\dfrac{{10}}{x} + \dfrac{5}{y} = \dfrac{4}{3}\end{array} \right.\)

Đặt \(\dfrac{1}{x} = a,\dfrac{1}{y} = b\,\,\,\left( {a > 0,\,\,b > 0} \right)\,\) ta được:

\(\begin{array}{l}\left\{ \begin{array}{l}5a + 10b = \dfrac{7}{6}\\10a + 5b = \dfrac{4}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5a + 10b = \dfrac{7}{6}\\20a + 10b = \dfrac{8}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}15a = \dfrac{3}{2}\\10a + 5b = \dfrac{4}{3}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{{10}}\\10.\dfrac{1}{{10}} + 5b = \dfrac{4}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{{10}}\\5b = \dfrac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{{10}}\\b = \dfrac{1}{{15}}\end{array} \right.\,\,\,\left( {tm} \right)\\ \Rightarrow \left\{ \begin{array}{l}\dfrac{1}{x} = \dfrac{1}{{10}}\\\dfrac{1}{y} = \dfrac{1}{{15}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = 15\end{array} \right.\,\,\,\left( {tm} \right)\end{array}\)

Vậy vận tốc lúc lên dốc là \(10\,\,\left( {km/h} \right)\) và vận tốc lúc xuống dốc là \(15\,\,\left( {km/h} \right)\).

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com