Cho tam giác nhọn \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Gọi \(AH\) là đường cao của
Cho tam giác nhọn \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Gọi \(AH\) là đường cao của tam giác \(ABC\,\left( {H \in BC} \right)\). Kẻ \(HE\) vuông góc với \(AB\,\left( {E \in AB} \right),\,HF\) vuông góc với \(AC\,\left( {F \in AC} \right).\)
1) Chứng minh tứ giác \(AEHF\) nội tiếp trong một đường tròn.
2) Đường thẳng \(EF\) cắt đường tròn \(\left( O \right)\) tại hai điểm \(M,N\)\((M\) thuộc cung nhỏ \(AB)\). Chứng minh số đo cung \(ABC = \)số đo cung \({\rm{AF}}M\) và \(AH = AN.\)
Quảng cáo
1) Sử dụng dấu hiệu nhận biết: tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.
2) + Ta sẽ chứng minh \(A,B,E,F,C\) cùng thuộc một đường tròn
+ Nối \(C\) với \(N\), kẻ đường kính \(AD\).
Gọi \(I\) là giao điểm của \(AD\) và \(MN.\)
Ta sẽ chứng minh: \(A{H^2} = AF.AC\) và \(A{N^2} = AC.AF\), từ đó có điều phải chứng minh.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











