Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác nhọn \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Gọi \(AH\) là đường cao của

Câu hỏi số 541802:
Vận dụng

Cho tam giác nhọn \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Gọi \(AH\) là đường cao của tam giác \(ABC\,\left( {H \in BC} \right)\). Kẻ \(HE\) vuông góc với \(AB\,\left( {E \in AB} \right),\,HF\) vuông góc với \(AC\,\left( {F \in AC} \right).\)

1) Chứng minh tứ giác \(AEHF\) nội tiếp trong một đường tròn.

2) Đường thẳng \(EF\) cắt đường tròn \(\left( O \right)\) tại hai điểm \(M,N\)\((M\) thuộc cung nhỏ \(AB)\). Chứng minh số đo cung \(ABC = \)số đo cung \({\rm{AF}}M\) và \(AH = AN.\)

Quảng cáo

Câu hỏi:541802
Phương pháp giải

1) Sử dụng dấu hiệu nhận biết: tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

2) + Ta sẽ chứng minh \(A,B,E,F,C\) cùng thuộc một đường tròn

+ Nối \(C\) với \(N\), kẻ đường kính \(AD\).

Gọi \(I\) là giao điểm của \(AD\) và \(MN.\)

Ta sẽ chứng minh: \(A{H^2} = AF.AC\) và \(A{N^2} = AC.AF\), từ đó có điều phải chứng minh.

Giải chi tiết

1) Ta có:

\(\begin{array}{l}AB \bot HE\,\,\,\left( {gt} \right) \Rightarrow AE \bot HE\,\,\,\left( {E \in AB} \right)\, \Rightarrow \angle AEH = {90^o}\\AC \bot HF\,\left( {gt} \right) \Rightarrow AF \bot HF\,\,\,\left( {F \in AC} \right) \Rightarrow \angle AFH = {90^o}\end{array}\)

Suy ra \(\angle AEH + \angle AFH = {180^o}\)

Mà \(\angle AEH\) và \(\angle AFH\) là hai góc đối nhau

\( \Rightarrow \) Tứ giác \(AEHF\) nội tiếp trong một đường tròn (dấu hiệu nhận biết) (đpcm)   (*)

2) Ta có: \(\angle AEF = \angle AHF\) (2 góc nội tiếp cùng chắn cung \(AF\))

Xét \(\Delta HFC\) vuông tại \(F\) ta có: \(\angle FCH + \angle FHC = {90^o}\)

Mà \(AH \bot BC \Rightarrow \angle \,AHC = {90^o} \Rightarrow \angle AHF + \angle FHC = {90^O}\)

Do đó \(\angle FCH = \angle AEF\) hay \(\angle AEF = \angle ACB\)

Xét \(\Delta ABC\) và \(\Delta AFE\) ta có:

\(\begin{array}{l}\angle BAC\,\,\,chung\\\angle AEF = \angle ACB\,\,\,\,\left( {cmt} \right)\end{array}\)  

\( \Rightarrow \Delta ABC\~\Delta AFE\,\,\left( {g - g} \right)\)

\( \Rightarrow \angle ABC = \angle AFM\)(2 góc tương ứng)

Lại có: \(\angle AEF = \angle ACH\,\)(cùng bằng \(\angle AHF\))

\(\begin{array}{l} \Rightarrow \angle AEF + \angle BEF = {180^o}\\ \Leftrightarrow \angle AEF + \angle ACH = {180^o}\end{array}\)

Hay \(\angle AEF + \angle FCB = {180^o}\)

Suy ra tứ giác \(BEFC\) nội tiếp một đường tròn (dấu hiệu nhận biết)               (**)

Từ (*) và (**) suy ra các điểm \(A,B,E,F,C\) cùng thuộc một đường tròn

Mà \(\angle ABC = \angle AFM\)

Nên số đo cung \(ABC\) bằng số đo cung \(AFM\) (đpcm)

Nối \(C\) với \(N\), kẻ đường kính \(AD\).

Gọi \(I\) là giao điểm của \(AD\) và \(MN.\)

Ta có: \(\angle AEF = \angle AHF = \angle ACH = \angle ADB\)

\( \Rightarrow \angle AEI + \angle EAI = \angle ADB + \angle BAD = {90^o}\)

Suy ra \(\Delta AEI\) vuông tại \(I \Rightarrow AD \bot EF\) hay \(AD \bot MN\) tại \(I.\)

Mà đường kính vuông góc với dây cung thì đi qua trung điểm của dây cung đó nên \(I\) là trung điểm của \(MN.\)

\( \Rightarrow \Delta AMN\) cân tại \(A\) \( \Rightarrow \angle AMN = \angle ANM\) (tính chất)

Ta có: \(\angle AMN = \angle ACN\) (2 góc nội tiếp cùng chắn cung \(AN\))

Suy ra \(\angle ACN = \angle ANM\) hay \(\angle ACN = \angle ANF\)

Áp dụng hệ thức lượng trong \(\Delta AHC\) ta có: \(A{H^2} = AF.AC\)   (1)

Xét \(\Delta ANC\) và \(\Delta AFN\) ta có:

\(\begin{array}{l}\angle NAC\,\,chung\\\angle ACN = \angle ANF\,\,\,\left( {cmt} \right)\\ \Rightarrow \Delta ANC\~\Delta AFN\,\,\,\left( {g - g} \right)\end{array}\)

\( \Rightarrow \dfrac{{AN}}{{AF}} = \dfrac{{AC}}{{AN}}\) (cặp cạnh tương ứng tỉ lệ)

\( \Rightarrow A{N^2} = AC.AF\)                                                                  (2)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(AH = AN\) (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com