Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tứ diện đều \(ABCD\) có tất cả các cạnh đều bằng \(2a\). Khoảng cách từ đỉnh \(A\)

Câu hỏi số 548106:
Thông hiểu

Cho tứ diện đều \(ABCD\) có tất cả các cạnh đều bằng \(2a\). Khoảng cách từ đỉnh \(A\) đến mặt phẳng \(\left( {BCD} \right)\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:548106
Phương pháp giải

Sử dụng tính chất của tứ diện đều \(ABCD\), có \(O\) là tâm đáy thì \(AO \bot \left( {BCD} \right)\,\, \Rightarrow d\left( {A;\,\,\left( {BCD} \right)} \right) = AO\).

Giải chi tiết

Gọi \(O\) là tâm của \(\Delta BCD,\,\,M\) là trung điểm \(CD\).

Vì tứ diện \(ABCD\) đều nên \(AO \bot \left( {BCD} \right)\,\, \Rightarrow d\left( {A;\,\,\left( {BCD} \right)} \right) = AO\).

\(BM = \,\dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 ;\,\,BO = \,\dfrac{2}{3}BM = \,\,\dfrac{{2a\sqrt 3 }}{3}\);

\(AO = \,\sqrt {A{B^2} - B{O^2}}  = \,\sqrt {4{a^2} - \dfrac{{12{a^2}}}{9}}  = \,\dfrac{{2a\sqrt 6 }}{3}\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com