Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {1;2} \right]\) thỏa mãn
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {1;2} \right]\) thỏa mãn \(\int\limits_1^2 {{{\left( {x - 1} \right)}^2}f\left( x \right)dx = - \dfrac{1}{3}} \), \(f\left( 2 \right) = 0\) và \(\int\limits_1^2 {{{\left[ {f'\left( x \right)} \right]}^2}dx = 7} \). Tính tích phân \(I = \int\limits_1^2 {f\left( x \right)dx} \)
Đáp án đúng là: B
Quảng cáo
.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












