Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Sóng ngang có tần số \(f\) truyền trên một sợi dây đàn hồi rất dài, với tốc độ 3cm/s. Xét hai điểm M và N nằm trên cùng một phương truyền sóng, cách nhau một khoảng x. Đồ thị biểu diễn li độ sóng của M và N cùng theo thời gian t như hình vẽ. Khoảng cách giữa hai phần tử chất lỏng tại M và N vào thời điểm \(t = 2,25s\) là

Câu 555110: Sóng ngang có tần số \(f\) truyền trên một sợi dây đàn hồi rất dài, với tốc độ 3cm/s. Xét hai điểm M và N nằm trên cùng một phương truyền sóng, cách nhau một khoảng x. Đồ thị biểu diễn li độ sóng của M và N cùng theo thời gian t như hình vẽ. Khoảng cách giữa hai phần tử chất lỏng tại M và N vào thời điểm \(t = 2,25s\) là

A. \(3cm\)

B. \(4cm\)

C. \(6cm\)

D. \(3\sqrt 5 cm\)

Câu hỏi : 555110

Phương pháp giải:

Đọc đồ thị u-t

Sử dụng VTLG và công thức tính góc quét: \(\Delta \varphi  = \omega .\Delta t\)

Bước sóng: \(\lambda  = vT = \dfrac{v}{f}\)

Độ lệch pha: \(\Delta \varphi  = \dfrac{{2\pi .\Delta x}}{\lambda }\)

Công thức tính khoảng cách: \(d = \sqrt {d_0^2 + \Delta {u^2}} \)

  • Đáp án : D
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Từ đồ thị ta có tại \(t = 0,25s\), M đi qua vị trí có li độ \(u = 2cm = \dfrac{A}{2}\) theo chiều âm và điểm N đi qua vị trí \(u = 2cm = \dfrac{A}{2}\) theo chiều dương. Biểu diễn các vị trí tương ứng trên đường tròn ta có:

    Từ vòng tròn, xác định được độ lệch pha giữa M và N là \(\Delta {\varphi _{MN}} = \dfrac{{2\pi }}{3}\)

    Khoảng thời gian N dao động từ \(N\left( {t = 0} \right) \to N\left( {t = 0,25s} \right)\)là:  

    \(t = \dfrac{\alpha }{\omega } = \dfrac{\pi }{6}.\dfrac{T}{{2\pi }} \Leftrightarrow \dfrac{T}{{12}} = 0,25s \Rightarrow T = 3s\)

    Bước sóng: \(\lambda  = v.T = 3.3 = 9cm\)

    Mặt khác, ta có: \(\Delta {\varphi _{MN}} = \dfrac{{2\pi }}{3} = \dfrac{{2\pi .\Delta x}}{\lambda } \Rightarrow \Delta x = \dfrac{\lambda }{3} = \dfrac{9}{3} = 3cm\) chính là khoảng cách theo không gian tại vị trí cân bằng của M và N.

    Trong khoảng thời gian từ \(t = 0,25s \to t = 2,25{\rm{s}}\) ta có \(\Delta t = 2s = \dfrac{{2T}}{3}\) tương ứng với góc quét:

    \(\alpha  = \omega .\Delta t = \dfrac{{2\pi }}{T}.\dfrac{{2T}}{3} = \dfrac{{4\pi }}{3}\)

    \( \Rightarrow \) Tại thời điểm \(t = 2,25s\) có N đi qua vị trí biên âm \({u_N} =  - A =  - 4cm\) và M đi qua vị trí \({u_M} = \dfrac{A}{2} = 2cm\) theo chiều dương.

    \( \Rightarrow \Delta u = {u_M} - {u_N} = 2 - \left( { - 4} \right) = 6cm\)

    Khoảng cách giữa M và N khi đó:

    \(d = \sqrt {\Delta {u^2} + \Delta {x^2}}  = \sqrt {{6^2} + {3^2}}  = 3\sqrt 5 cm\)

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com