Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Các ăng ten parabol thu sóng hoạt động dựa theo nguyên lý: mọi tia sóng song song với trục của

Câu hỏi số 555547:
Vận dụng cao

Các ăng ten parabol thu sóng hoạt động dựa theo nguyên lý: mọi tia sóng song song với trục của parabol đều có tia phản xạ đi qua tiêu điểm \(F\) của parabol (vì vậy nếu ta đặt thiết bị thu sóng tại \(F\) thì sẽ thu sóng được tốt nhất). Người ta chứng minh được rằng: Nếu đường thẳng vuông góc với trục của parabol tại  \(F\) cắt parabol tại 2 điểm \(A,B\) thì \(OF = \dfrac{1}{4}AB\) với \(O\) là đỉnh của parabol (tham khảo hình vẽ).

Tính độ dài đoạn \(OF\)ứng với mô hình trên của một ăng ten parabol (ngang 90cm và cao 9 cm).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:555547
Phương pháp giải

Ta gắn trục tọa độ của parabol và các điểm M, N vào hệ trục tọa độ \(Oxy\) với \(Oy\) là tia \(OF\) và \(Ox\) là tia thuộc đường thẳng vuông góc với \(OF\) tại \(O\) để giải bài toán.

Giải chi tiết

Ta gắn trục tọa độ của parabol và các điểm M, N vào hệ trục tọa độ \(Oxy\) với \(Oy\) là tia \(OF\) và \(Ox\) là tia thuộc đường thẳng vuông góc với \(OF\) tại \(O\), khi đó parabol đi qua gốc tọa độ và có dạng \(y = a{x^2}\) và hoành độ của điểm N bằng \(\dfrac{{MN}}{2}\) hay \(N\) có tọa độ là \(N\left( {45;9} \right)\),

Parabol đi qua hai điểm \(M,N\) nên ta có: \(9 = a{.45^2} \Leftrightarrow a = \dfrac{1}{{225}}\)

\( \Rightarrow \) Parabol là: \(y = \dfrac{1}{{225}}{x^2}\).

Đường thẳng vuông góc với trục của parabol tại  \(F\) cắt parabol tại 2 điểm \(A,\,\,B\) nên hai điểm A và B thuộc parabol.

Gọi tọa độ của \(F\) là \(F\left( {0;t} \right)\,\,\left( {t > 0} \right)\), tọa độ của \(B\) là \(B\left( {{x_B},{y_B}} \right)\).

\(OF = \dfrac{1}{4}AB \Rightarrow FB = \dfrac{1}{2}AB = \dfrac{1}{2}.4OF = 2OF = 2t\)\( \Rightarrow {x_B} = FB = 2t\)

\(F,A,B\) cùng thuộc đường thẳng \(AB\) và song song với trục hoành nên có tung độ bằng nhau.

\( \Rightarrow {y_B} = t \Rightarrow B\left( {2t;t} \right)\).

Vì \(B\) là điểm thuộc parabol \(y = \dfrac{1}{{225}}{x^2}\) nên

\(t = \dfrac{1}{{225}}.{\left( {2t} \right)^2} \Leftrightarrow 4{t^2} = 225t \Leftrightarrow 4{t^2} - 225t = 0 \Leftrightarrow t\left( {4t - 225} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\,\,\,\,\,\left( {ktm} \right)\\t = \dfrac{{225}}{4}\,\,\left( {tm} \right)\end{array} \right.\)

\( \Rightarrow OF = t = \dfrac{{225}}{4} = 56,25\left( {cm} \right)\)

Vậy \(OF = 56,25cm\).

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com