Cho các số thực dương \(x,y,z,t\) thoả mãn\(xyzt = 1\). Chứng minh rằng:\(\dfrac{1}{{{x^3}\left( {yz + zt
Cho các số thực dương \(x,y,z,t\) thoả mãn\(xyzt = 1\). Chứng minh rằng:
\(\dfrac{1}{{{x^3}\left( {yz + zt + ty} \right)}} + \dfrac{1}{{{y^3}\left( {xz + zt + tx} \right)}} + \dfrac{1}{{{z^3}\left( {xt + ty + yx} \right)}} + \dfrac{1}{{{t^3}\left( {xy + yz + zx} \right)}} \ge \dfrac{4}{3}\).
Quảng cáo
+ Bất đẳng thức Bu – nhi – cop – xki: Cho hai bộ số thực \(\left( {{a_1};{a_2};...;{a_n}} \right)\) và \(\left( {{b_1};{b_2};...;{b_n}} \right)\), ta có:
\(\left( {{a_1}^2 + {a_2}^2 + .... + {a_n}^2} \right)\left( {{b_1}^2 + {b_2}^2 + .... + {b_n}^2} \right) \ge {\left( {{a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n}} \right)^2}\)
Dấu “\( = \)” xảy ra khi và chỉ khi \(\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = ... = \dfrac{{{a_n}}}{{{b_n}}}\)
+ Bất đẳng thức Cô – si: Cho \({x_1};{x_2};...;{x_n}\) là các số thực dương, ta có:
\({x_1} + {x_2} + ... + {x_n} \ge n\sqrt[n]{{{x_1}.{x_2}...{x_n}}}\)
Dấu “\( = \)” xảy ra khi và chỉ khi \({x_1} = {x_2} = ... = {x_n}\)
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










