Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình

Câu hỏi số 564949:
Vận dụng

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình

\(\log _2^2x - \left( {m + 1} \right){\log _2}x - 2m + 3 \ge 0\)

nghiệm đúng với mọi \(x \in \left[ {1;32} \right]\)?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:564949
Phương pháp giải

- Cô lập m.

- Đưa bất phương trình về dạng \(m \le f\left( t \right)\,\,\forall t \in \left[ {0;5} \right]\), \(t = {\log _2}x\).

- Giải bất phương trình nghiệm đúng: \(m \le f\left( t \right)\,\,\forall t \in \left[ {0;5} \right]\) \( \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0;5} \right]} f\left( t \right)\).

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\log _2^2x - \left( {m + 1} \right){\log _2}x - 2m + 3 \ge 0\,\,(1)\\ \Leftrightarrow \log _2^2x - {\log _2}x + 3 \ge m\left( {{{\log }_2}x + 2} \right)\end{array}\)

Đặt \({\log _2}x = t,\,\,t \in \left[ {0;5} \right]\). Bất phương trình trở thành:

\({t^2} - t + 3 \ge m\left( {t + 2} \right) \Leftrightarrow m \le \dfrac{{{t^2} - t + 3}}{{t + 2}}\,\,\left( {do\,\,t + 2 > 0} \right)\,\,\,(2)\).

Xét hàm số \(f\left( t \right) = \dfrac{{{t^2} - t + 3}}{{t + 2}},\,t \in \left[ {0;5} \right]\), có:

\(f'\left( t \right) = \dfrac{{\left( {2t - 1} \right)\left( {t + 2} \right) - \left( {{t^2} - t + 3} \right)}}{{{{\left( {t + 2} \right)}^2}}} = \dfrac{{{t^2} + 4t - 5}}{{{{\left( {t + 2} \right)}^2}}}\)

Giải \(f'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1 \in \left[ {0;5} \right]\\t =  - 5 \notin \left[ {0;5} \right]\end{array} \right.\).

Hàm số \(y = f\left( t \right)\) liên tục trên \(\left[ {0;5} \right]\), có: \(f\left( 0 \right) = \dfrac{3}{2},\,f\left( 1 \right) = 1,\,f\left( 5 \right) = \dfrac{{23}}{7}\).

\( \Rightarrow \mathop {\min }\limits_{\left[ {1;5} \right]} f\left( t \right) = 1\).

Để (1) nghiệm đúng với mọi \(x \in \left[ {1;32} \right]\) thì (2) nghiệm đúng với mọi \(t \in \left[ {0;5} \right] \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {1;5} \right]} f\left( t \right) \Leftrightarrow m \le 1\).

Mà \(m \in \left[ { - 10;10} \right],m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 10; - 9;...;0;1} \right\}\).

Vậy có 12 giá trị m thỏa mãn.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com