Cho \(x,y,z \in \left[ {0;2} \right]\) và thỏa mãn \(x + 2y + z = 6\). Tìm giá trị lớn nhất của biểu
Cho \(x,y,z \in \left[ {0;2} \right]\) và thỏa mãn \(x + 2y + z = 6\). Tìm giá trị lớn nhất của biểu thức \(P = {3^{2x - {x^2}}} + {5^{2y - {y^2}}} + {3^z} + 2{x^2} + 4{y^2}\).
Đáp án đúng là: B
Quảng cáo
Áp dụng BĐT Bernoulli: \({a^x} \le \left( {a - 1} \right)x + 1\,\,\left( {0 < a \ne 1,\,\,0 \le x \le 1} \right)\).
Đẳng thức xảy ra khi \(x = 0\) hoặc \(x = 1\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












