Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = x{e^x}\,\,\forall x \in \mathbb{R}\)

Câu hỏi số 574393:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = x{e^x}\,\,\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = 2022\). Tính \(\int\limits_0^2 {\left[ {f\left( x \right) - 2021} \right]dx} \).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:574393
Phương pháp giải

Tìm \(f\left( x \right) = \int {f'\left( x \right)dx} \) và điều kiện \(f\left( 0 \right) = 2022\). Sử dụng phương pháp tích phân từng phần.

Tiếp tục sử dụng phương pháp tích phân từng phần tính\(\int\limits_0^2 {\left[ {f\left( x \right) - 2021} \right]dx} \).

Giải chi tiết

Ta có:

\(\begin{array}{l}f\left( x \right) = \int {f'\left( x \right)dx}  = \int {x{e^x}dx}  = \int {xd\left( {{e^x}} \right)} \\\,\,\,\,\,\,\,\,\,\,\,\,\, = x{e^x} - \int {{e^x}dx}  = x{e^x} - {e^x} + C\end{array}\)

Mà \(f\left( 0 \right) = 2022\) nên \(0 - 1 + C = 2022 \Leftrightarrow C = 2023\).

\( \Rightarrow f\left( x \right) = x{e^x} - {e^x} + 2023\).

Khi đó ta có:

\(\begin{array}{l}\int\limits_0^2 {\left[ {f\left( x \right) - 2021} \right]dx} \\ = \int\limits_0^2 {\left( {x{e^x} - {e^x} + 2023 - 2021} \right)dx} \\ = \int\limits_0^2 {\left( {x{e^x} - {e^x} + 2} \right)dx} \\ = \int\limits_0^2 {x{e^x}dx}  - \int\limits_0^2 {{e^x}dx}  + 2\int\limits_0^2 {dx} \\ = \left( {\left. {x{e^x}} \right|_0^2 - \int\limits_0^2 {{e^x}dx} } \right) - \int\limits_0^2 {{e^x}dx}  + 2\int\limits_0^2 {dx} \\ = \left. {x{e^x}} \right|_0^2 - 2\left. {{e^x}} \right|_0^2 + 2\left. x \right|_0^2\\ = 2{e^2} - 2{e^2} + 2 + 2\left( {2 - 0} \right)\\ = 6\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com