Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho hai tập hợp M = {8k + 5 | k ∈ Z}, N = {4l + 1 | l ∈ Z}. Khẳng định nào sau đây là

Câu hỏi số 578682:
Thông hiểu

 Cho hai tập hợp M = {8k + 5 | k ∈ Z}, N = {4l + 1 | l ∈ Z}.

Khẳng định nào sau đây là đúng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:578682
Giải chi tiết

Rõ ràng, ta có \(M \ne \emptyset ,N \ne \emptyset \)

Giả sử x là một phần tử bất kì của tập M, ta có x = 8k + 5 (k ∈ Z)

Khi đó, ta có thể viết x = 8k + 5 = 4(2k+1) + 1 = 4l + 1

Với l = 2k + 1 ∈ Z do k ∈ Z. Suy ra x ∈ N

Vậy  \(\forall x \in M \Rightarrow x \in N\) hay \(M \subset N.\)

Mặt khác \(1 \in N\) nhưng \(1 \notin M\) nên \(N \not\subset M.\)

Từ đó cũng \( \Rightarrow M \ne N\)

Vậy chỉ có khẳng định A là đúng

 

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com