Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính tích hai nghiệm của phương trình \({\left( {{{\log }_2}x} \right)^2} + {\log _2}x - 12 = 0\).

Câu hỏi số 581652:
Thông hiểu

Tính tích hai nghiệm của phương trình \({\left( {{{\log }_2}x} \right)^2} + {\log _2}x - 12 = 0\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:581652
Giải chi tiết

Đặt \({\log _2}x = t\).

\(\begin{array}{l} \Rightarrow {t^2} + t - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t =  - 4\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 3 \Leftrightarrow x = 8\\{\log _2}x =  - 4 \Leftrightarrow x = \dfrac{1}{{16}}\end{array} \right.\end{array}\)

Vậy tích hai nghiệm bằng \(8.\dfrac{1}{{16}} = \dfrac{1}{2}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com