Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + 9x -

Câu hỏi số 588339:
Thông hiểu

Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + 9x - 1\) đồng biến trên \(\mathbb{R}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:588339
Phương pháp giải

Hàm số \(y = f\left( x \right)\) đồng biến trên \(\mathbb{R} \Leftrightarrow y' \ge 0\,\,\forall x \in \mathbb{R}\).

Giải chi tiết

Ta có: \(y' = {x^2} - 2mx + 9\).

Để hàm số đồng biến trên \(\mathbb{R}\) thì \( \Leftrightarrow y' \ge 0\,\,\forall x \in \mathbb{R}\).

\( \Leftrightarrow \Delta ' = {m^2} - 9 \le 0 \Leftrightarrow  - 3 \le m \le 3\).

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2; - 1;0;1;2;3} \right\}\).

Vậy có 7 giá trị m thỏa mãn.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com