Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính tích phân \(I = \int\limits_{ - 2}^{ - 1} {\sqrt {1 - 4x} dx} \).

Câu hỏi số 595221:
Thông hiểu

Tính tích phân \(I = \int\limits_{ - 2}^{ - 1} {\sqrt {1 - 4x} dx} \).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:595221
Phương pháp giải

Đặt \(\sqrt {1 - 4x}  = t\).

Giải chi tiết

Đặt \(\sqrt {1 - 4x}  = t\) \( \Rightarrow 1 - 4x = {t^2}\)

Vi phân: \( - 4dx = 2tdt \Leftrightarrow dx =  - \dfrac{1}{2}tdt\).

Đổi cận: \(\left\{ \begin{array}{l}x =  - 2 \Rightarrow t = 3\\x =  - 1 \Rightarrow t = \sqrt 5 \end{array} \right.\).

Thay:

\(\begin{array}{l}\int\limits_3^{\sqrt 5 } {t.\left( { - \dfrac{1}{2}tdt} \right)}  =  - \dfrac{1}{2}\int\limits_3^{\sqrt 5 } {{t^2}dt}  =  - \dfrac{1}{2}.\left. {\dfrac{{{t^3}}}{3}} \right|_3^{\sqrt 5 }\\ =  - \dfrac{1}{2}\left( {\dfrac{{5\sqrt 5 }}{3} - 9} \right) =  - \dfrac{{5\sqrt 5 }}{6} + \dfrac{9}{2}.\end{array}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com