Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Biết \(\int\limits_0^{\frac{\pi }{4}} {\left( {1 + x} \right)\cos 2xdx}  = \dfrac{1}{a} + \dfrac{\pi }{b}\) (a, b

Câu hỏi số 596625:
Vận dụng

Biết \(\int\limits_0^{\frac{\pi }{4}} {\left( {1 + x} \right)\cos 2xdx}  = \dfrac{1}{a} + \dfrac{\pi }{b}\) (a, b là các số nguyên khác 0). Tính giá trị ab.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:596625
Phương pháp giải

Sử dụng tích phân từng phần, đặt \(\left\{ \begin{array}{l}x + 1 = u\\\cos 2xdx = dv\end{array} \right.\).

Giải chi tiết

Đặt \(\left\{ \begin{array}{l}x + 1 = u \Rightarrow dx = du\\\cos 2xdx = dv \Rightarrow \dfrac{1}{2}\sin 2x = v\end{array} \right.\).

\(\begin{array}{l}I = \left. {\dfrac{1}{2}\left( {x + 1} \right)\sin 2x} \right|_0^{\frac{\pi }{4}} - \int\limits_0^{\frac{\pi }{4}} {\dfrac{1}{2}\sin 2xdx} \\\,\,\, = \left. {\dfrac{1}{2}\left( {x + 1} \right)\sin 2x} \right|_0^{\frac{\pi }{4}} + \left. {\dfrac{1}{4}\cos 2x} \right|_0^{\frac{\pi }{4}}\\\,\,\,\, = \left[ {\dfrac{1}{2}\left( {\dfrac{\pi }{4} + 1} \right)\sin \dfrac{\pi }{2}} \right] + \left[ {\dfrac{1}{4}\cos \dfrac{\pi }{4} - \dfrac{1}{4}\cos 0} \right]\\\,\,\,\, = \dfrac{\pi }{8} + \dfrac{1}{2} - \dfrac{1}{4} = \dfrac{\pi }{8} + \dfrac{1}{4}\end{array}\)

\(\begin{array}{l} \Rightarrow a = 4,\,\,b = 8\\ \Rightarrow ab = 32.\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com