Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm \(x,y \in \mathbb{Z}\)biết: \(\left( {x - 1} \right).\left( {y + 2} \right) = 11.\)

Câu hỏi số 617092:
Vận dụng cao

Tìm \(x,y \in \mathbb{Z}\)biết: \(\left( {x - 1} \right).\left( {y + 2} \right) = 11.\)

Quảng cáo

Câu hỏi:617092
Phương pháp giải

Tìm hai số nguyên có tích là 11. Lần lượt xét các trường hợp của \(x - 1\) và \(y + 2\).

Giải chi tiết

Vì \(11 = 11.1 = \left( { - 11} \right).\left( { - 1} \right)\)nên ta có bảng sau:

Vậy \(\left( {x;y} \right) = \left( { - 10; - 3} \right)\); \(\left( {x;y} \right) = \left( {0; - 13} \right)\); \(\left( {x;y} \right) = \left( {2;9} \right)\) hoặc \(\left( {x;y} \right) = \left( {12; - 1} \right)\).

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com