Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một con lắc lò xo gồm một vật nhỏ khối lượng 100g mang điện tích 10-6 C, một lò xo có độ

Câu hỏi số 623624:
Vận dụng cao

Một con lắc lò xo gồm một vật nhỏ khối lượng 100g mang điện tích 10-6 C, một lò xo có độ cứng 10 N/m được đặt trên một bề mặt nằm ngang không ma sát. Ban đầu, kéo vật đến vị trí lò xo dãn một đoạn 2cm. Thả nhẹ vật và đồng thời tạo ra trong không gian một điện trường đều với vecto cường độ điện trường hướng xiên một góc α = 600 so với phương ngang và có độ lớn E = 6.105 V/m như hình vẽ. Lấy g = π2 = 10 m/s2. Khi vật đi qua vị trí mà lò xo không biến dạng lần đầu tiên thì tốc độ của nó là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:623624
Phương pháp giải

Tần số góc \(\omega  = \sqrt {\dfrac{k}{m}} \)

Lực điện theo phương ngang: \({F_d} = E.q.\cos \alpha \)

Lực đàn hồi: \({F_{dh}} = k.\Delta l\)

Khi vật ở vị trí cân bằng, có: \(\overrightarrow {{F_d}}  + \overrightarrow {{F_{dh}}}  = \overrightarrow 0 \)

Công thức độc lập thời gian: \(v = \omega \sqrt {{A^2} - {x^2}} \)

Giải chi tiết

Tần số góc dao động của con lắc là:

\(\omega  = \sqrt {\dfrac{k}{m}}  = \sqrt {\dfrac{{10}}{{0.1}}}  = 10(rad/s)\)

Lực điện tác dụng lên vật theo phương ngang:

\({F_d} = E.q.\cos \alpha  = {6.10^5}{.10^{ - 6}}.\cos {60^0} = 0,3(N)\)

Lực đàn hồi: \({F_{dh}} = k.\Delta l\)

Áp dụng định luật II Newton cho vật khi ở vị trí cân bằng, có:

\(\overrightarrow {{F_d}}  + \overrightarrow {{F_{dh}}}  = \overrightarrow 0  \Rightarrow \overrightarrow {{F_d}}  =  - \overrightarrow {{F_{dh}}} \)

Ở vị trí cân bằng, lò xo bị nén.

Công thức độc lập thời gian: \(v = \omega \sqrt {{A^2} - {x^2}} \)

\(\begin{array}{l}\overrightarrow {{F_d}}  + \overrightarrow {{F_{dh}}}  = \overrightarrow 0  \Rightarrow \overrightarrow {{F_d}}  =  - \overrightarrow {{F_{dh}}}  = k\Delta l\\ \Leftrightarrow 0,3 = 10.\Delta l\\ \Rightarrow \Delta l = 0,03(m) = 3(cm)\end{array}\)

Khi con lắc về vị trí lò xo không biến dạng, li độ và biên độ của con lắc là:

\(\left\{ \begin{array}{l}x = \Delta l = 3cm\\A = 2 + \Delta l = 5cm\end{array} \right.\)

Áp dụng công thức độc lập thời gian, ta có:

\(v = \omega \sqrt {{A^2} - {x^2}}  = 10\sqrt {{5^2} - {3^2}}  = 20(cm/s)\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com