Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + 2\) trên đoạn \(\left[ {0;3} \right]\) bằng

Câu hỏi số 623807:
Thông hiểu

Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + 2\) trên đoạn \(\left[ {0;3} \right]\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:623807
Phương pháp giải

Để tìm GTNN, GTLN của hàm số \(f\) trên đoạn \(\left[ {a;b} \right]\), ta làm như sau:

- Tìm các điểm \({x_1};{x_2};...;{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số \(f\) có đạo hàm bằng 0 hoặc không có đạo hàm.

- Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);\,\,f\left( a \right);\,f\left( b \right)\)

- So sánh các giá trị vừa tìm được. Số lớn nhất trong các giá trị đó chính là GTLN của \(f\) trên \(\left[ {a;b} \right]\); số nhỏ nhất trong các giá trị đó chính là GTNN của \(f\) trên \(\left[ {a;b} \right]\).

Giải chi tiết

\(y = {x^3} - 3{x^2} + 2 \Rightarrow y' = 3{x^2} - 6x,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).

Hàm số \(y = {x^3} - 3{x^2} + 2\) liên tục trên đoạn \(\left[ {0;3} \right]\) có : \(y\left( 0 \right) = 2,y\left( 2 \right) =  - 2,y\left( 3 \right) = 2 \Rightarrow \) Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + 2\) trên đoạn \(\left[ {0;3} \right]\) bằng \( - 2\).

Chọn B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com