Trong không gian với hệ tọ̣ độ Oxyz, có tất cả bao nhiêu giá trị nguyên của m để \({x^2} +
Trong không gian với hệ tọ̣ độ Oxyz, có tất cả bao nhiêu giá trị nguyên của m để \({x^2} + {y^2} + {z^2} + 2(m + 2)x - 2(m - 1)z + 3{m^2} - 5 = 0\) là phương trình một mặt cầu?
Đáp án đúng là: C
Quảng cáo
Phương trình dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) là phương trình mặt cầu khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0.\)
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












