Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho bất phương trình \({2^{{x^2} + x}} + 2x \le {2^{3 - x}} - {x^2} + 3\) có tập nghiệm \(\left[ {a;b}

Câu hỏi số 641550:
Vận dụng

Cho bất phương trình \({2^{{x^2} + x}} + 2x \le {2^{3 - x}} - {x^2} + 3\) có tập nghiệm \(\left[ {a;b} \right]\). Giá trị của biểu thức \(2a + b\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:641550
Phương pháp giải

Sử dụng hàm đặc trưng.

Giải chi tiết

Bất phương trình \({2^{{x^2} + x}} + 2x \le {2^{3 - x}} - {x^2} + 3 \Leftrightarrow {2^{{x^2} + x}} + {x^2} + x \le {2^{3 - x}} + 3 - x\) (*)

Xét hàm số \(f\left( t \right) = {2^t} + t\): đồng biến trên R.

Khi đó (*) \( \Leftrightarrow {x^2} + x \le 3 - x \Leftrightarrow {x^2} + 2x - 3 \le 0 \Leftrightarrow  - 3 \le x \le 1\).

Bất phương trình có tập nghiệm là \(\left[ { - 3;1} \right] \Rightarrow a =  - 3,b = 1 \Rightarrow \)\(2a + b =  - 5\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com