Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(3a,SA = SD = 3a\), \(SB = SC = 3a\sqrt 3 \).

Câu hỏi số 650288:
Thông hiểu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(3a,SA = SD = 3a\), \(SB = SC = 3a\sqrt 3 \). Gọi \(M,N\) lần lượt là trung điểm các cạnh \(SA\) và \(SD,P\) là một điểm thuộc cạnh \(AB\) sao cho \(AP = 2a\). Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng \(\left( {MNP} \right)\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:650288
Giải chi tiết

Ta có \(\left\{ {\begin{array}{*{20}{l}}{AD//\left( {MNP} \right)}\\{AD \subset \left( {ABCD} \right)}\\{\left( {ABCD} \right) \cap \left( {MNP} \right) = PQ}\end{array} \Rightarrow PQ//AD\left( {Q \in CD} \right)} \right.\).

Thiết diện khối chóp cắt bởi mặt phẳng \(\left( {MNP} \right)\) là hình thang \(MNQP\).

Do \(\Delta SDC = \Delta SAB\left( {c - c - c} \right)\) nên \(\Delta NDQ = \Delta MAP\left( {c - g - c} \right) \Rightarrow NQ = MP\).

Vậy là \(MNQP\) hình thang cân.

Ta có \({\rm{cos}}\angle SAB = \dfrac{{S{A^2} + A{B^2} - S{B^2}}}{{2.SA.AB}} = \dfrac{{9{a^2} + 9{a^2} - 27{a^2}}}{{2.3a.3a}} = \dfrac{{ - 1}}{2}\).

\(M{P^2} = M{A^2} + A{P^2} - 2.MA.AP.{\rm{cos}}\widehat {MAP} = \dfrac{{9{a^2}}}{4} + 4{a^2} - 2.\dfrac{{3a}}{2}.2a.\dfrac{{ - 1}}{2} = \dfrac{{37{a^2}}}{4} \Rightarrow MP = \dfrac{{a\sqrt {37} }}{2}\).

Từ \(M\) kẻ \(ME \bot PQ\), từ \(N\) kẻ \(NF \bot PQ\). Tứ giác \(MNFE\) là hình chữ nhật nên

\(MN = EF = \dfrac{{3a}}{2} \Rightarrow PE = QF = \dfrac{{3a}}{4} \Rightarrow ME = \sqrt {M{P^2} - P{E^2}}  = \dfrac{{a\sqrt {139} }}{4}\).

Vậy diện tích thiết diện cần tìm là \({S_{MNQP}} = \dfrac{{\left( {MN + PQ} \right) \cdot ME}}{2} = \dfrac{{9{a^2}\sqrt {139} }}{{16}}\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com