Cho đường tròn (O) có hai đường kính AC, BD (A khác B, D). Trên đoạn BC lấy điểm E (E khác B, C),
Cho đường tròn (O) có hai đường kính AC, BD (A khác B, D). Trên đoạn BC lấy điểm E (E khác B, C), đường thẳng ED cắt đường tròn (O) tại điểm thứ hai là F.
a) Chứng minh rằng AB = CD và \(\angle CFD = \angle BCA\).
b) Đường thẳng qua E vuông góc với BC cắt tia AF tại G. Chứng minh rằng tứ giác CEFG nội tiếp và CD.EG = CB.CE.
c) Gọi H là giao điểm của tia GE và AD. Đường thẳng qua H, song song với AC cắt đường thẳng qua E, song song với FC tại K. Chứng minh rằng ba điểm G, C, K thẳng hàng.
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











