Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Kí hiệu M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = {e^x} - x\)

Câu hỏi số 666771:
Thông hiểu

Kí hiệu M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = {e^x} - x\) trên đoạn \(\left[ { - 1;1} \right]\). Giá trị biểu thức M.m bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:666771
Phương pháp giải

Phương pháp tìm GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên đoạn [a;b]

B1: Giải phương trình \(f'\left( x \right) = 0\) tìm các nghiệm \({x_i} \in \left[ {a;b} \right]\).

B2: Tính các giá trị \(f\left( a \right),\,\,f\left( b \right),\,\,f\left( {{x_i}} \right)\).

B3: KL: \(\mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right),\,\,f\left( b \right),\,\,f\left( {{x_i}} \right)} \right\}\), \(\mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right),\,\,f\left( b \right),\,\,f\left( {{x_i}} \right)} \right\}\).

Giải chi tiết

Ta có \(y' = {e^x} - 1 = 0 \Leftrightarrow x = 0\).

\(y\left( { - 1} \right) = \dfrac{1}{e} + 1,\,\,y\left( 0 \right) = 1,\,\,y\left( 1 \right) = e - 1\)

\( \Rightarrow \left\{ \begin{array}{l}m = \mathop {\min }\limits_{\left[ { - 1;1} \right]} y = 1\\M = \mathop {\max }\limits_{\left[ { - 1;1} \right]} y = e - 1\end{array} \right. \Rightarrow M.m = e - 1.\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com