Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một tấm tôn hình tam giác \(ABC\) có độ dài cạnh \(AB = 3;AC = 2;BC = \sqrt {19} \). Điểm \(H\) là

Câu hỏi số 669113:
Vận dụng

Một tấm tôn hình tam giác \(ABC\) có độ dài cạnh \(AB = 3;AC = 2;BC = \sqrt {19} \). Điểm \(H\) là chân đường cao kẻ từ đỉnh \(A\) của tam giác \(ABC\). Người ta dùng compa có tâm là \(A\), bán kính \(AH\) vạch một cung tròn nhỏ \(MN\). Lấy phần hình quạt gò thành hình nón không có mặt đáy với đỉnh là \(A\), cung \(MN\) thành đường tròn đáy của hình nón (như hình vẽ). Tính thể tích khối nón trên.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:669113
Phương pháp giải

Tính độ dài dây cung MN bằng chu vi của hình nón, từ đó tính bán kính hình nón

Đường sinh của hình nón là AM = AN, Tính đường cao từ đường sinh và bán kính từ đó suy ra thể tích.

Giải chi tiết

Xét tam giác ABC ta có:

+) \(\cos \angle BAC = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \dfrac{{9 + 4 - 19}}{{2.3.2}} =  - \dfrac{1}{2} \Rightarrow \angle BAC = \dfrac{{2\pi }}{3}\).

+) \({S_{ABC}} = \dfrac{1}{2}AB.AC.\sin BAC = \dfrac{{3\sqrt 3 }}{2}\).

+) Mặt khác \({S_{ABC}} = \dfrac{{3\sqrt 3 }}{2} = \dfrac{1}{2}AH.BC \Rightarrow AH = \dfrac{{3\sqrt 3 }}{{BC}} = \dfrac{{3\sqrt {57} }}{{19}}\).

Hình quạt thu được có bán kính \(R = AH = \dfrac{{3\sqrt {57} }}{{19}}\) và số đo góc ở tâm

\(\alpha  = \dfrac{{2\pi }}{3}\) nên độ dài dây cung \(MN = R.\alpha  = \dfrac{{2\sqrt {57} }}{{19}}\pi \).

Hình nón thu được độ dài đường sinh \(l = AM = AH = \dfrac{{3\sqrt {57} }}{{19}}\), đường tròn đáy có bán kính \(r\).

Vì chu vi của đường tròn đáy bằng \(MN = \dfrac{{2\sqrt {57} }}{{19}}\pi \) nên ta có

\(2\pi r = \dfrac{{2\sqrt {57} }}{{19}}\pi  \Rightarrow r = \dfrac{{\sqrt {57} }}{{19}}{\rm{. }}\)

Chiều cao của hình nón

\(h = \sqrt {{l^2} - {r^2}}  = \sqrt {{{\left( {\dfrac{{3\sqrt {57} }}{{19}}} \right)}^2} - {{\left( {\dfrac{{\sqrt {57} }}{{19}}} \right)}^2}}  = \dfrac{{2\sqrt {114} }}{{19}}\).

Thể tích khối nón

\(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{{2\sqrt {114} }}{{361}}\pi \)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com