Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGTD Bách Khoa và TN THPT - Ngày 10-11/01/2026
↪ ĐGTD Bách Khoa (TSA) - Trạm 5 ↪ TN THPT - Trạm 2
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA =

Câu hỏi số 673949:
Nhận biết

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 \). Gọi \(\alpha \) là góc giữa \(SD\) và \(\left( {SAC} \right)\). Giá trị \({\rm{sin}}\alpha \) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:673949
Phương pháp giải

Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

Giải chi tiết

Gọi \(O = AC \cap BD\). Ta có: \(\left\{ {\begin{array}{*{20}{l}}{DO \bot AC}\\{DO \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)}\end{array} \Rightarrow DO \bot \left( {ABCD} \right)} \right.\).

\( \Rightarrow SO\) là hình chiếu của \(SD\) lên mặt phẳng \(\left( {SAC} \right) \Rightarrow \overline {\left( {SD;\left( {SAC} \right)} \right)}  = \widehat {\left( {SD;SO} \right)} = \widehat {DSO} = \alpha \).

Xét  vuông tại \(A:SD = \sqrt {3{a^2} + {a^2}}  = 2a\).

Xét  vuông tại \(O\) : có \(SD = 2a,OD = \dfrac{{a\sqrt 2 }}{2} \Rightarrow {\rm{sin}}\alpha  = {\rm{sin}}\widehat {DSO} = \dfrac{{DO}}{{SD}} = \dfrac{{\sqrt 2 }}{4}\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com