Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Hai người độc lập nhau ném bóng vào rổ. Mỗi người ném vào rổ của mình một quả bóng.

Câu hỏi số 673954:
Thông hiểu

Hai người độc lập nhau ném bóng vào rổ. Mỗi người ném vào rổ của mình một quả bóng. Biết rằng xác suất ném bóng trúng vào rổ của từng người tương ứng là \(\dfrac{1}{5}\) và \(\dfrac{2}{7}\). Gọi \(A\) là biến cố: "Cả hai cùng ném bóng trúng vào rổ". Khi đó, xác suất của biến cố \(A\) là bao nhiêu?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:673954
Phương pháp giải

\(A,B\) là hai biến cố độc lập nên: \(P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( B \right)\).

Giải chi tiết

Gọi \({\rm{A}}\) là biến cố: "Cả hai cùng ném bóng trúng vào rổ. "

Gọi \(X\) là biến cố: "người thứ nhất ném trúng rổ" \( \Rightarrow P\left( X \right) = \dfrac{1}{5}\).

Gọi Y là biến cố: "người thứ hai ném trúng rổ" \( \Rightarrow P\left( Y \right) = \dfrac{2}{7}\).

Ta thấy biến cố \(X,Y\) là 2 biến cố độc lập nhau, theo công thức nhân xác suất ta có:

\(P\left( A \right) = P\left( {X \cdot Y} \right) = P\left( X \right) \cdot P\left( Y \right) = \dfrac{1}{5} \cdot \dfrac{2}{7} = \dfrac{2}{{35}}\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com