Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB < AC\). Trên cạnh \(BC\) lấy điểm \(H\) sao cho \(HB =

Câu hỏi số 681983:
Vận dụng

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB < AC\). Trên cạnh \(BC\) lấy điểm \(H\) sao cho \(HB = BA\), từ \(H\) kẻ \(HE\) vuông góc với \(BC\) tại \(H\) (\(E\) thuộc \(AC)\)
a) Chứng minh: \(\Delta ABE = \Delta HBE\)
b) Chứng minh: Tam giác \(AEH\) cân tại \(E\).
c) Chứng minh: \(BE\) là đường trung trực của \(AH\).
d) Gọi \(K\) là giao điểm của \(HE\) và \(BA\). Chứng minh: \(BE\) vuông góc \(KC\).

Quảng cáo

Câu hỏi:681983
Phương pháp giải

a) Chứng minh hai tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông.

b) Chứng minh hai cạnh AE = EH.

c) Chứng minh BA = BH và EA = EH từ đó suy ra B và E đều nằm trên đường trung trực của AH.

d) Chứng minh E là trực tâm của tam giác ABC từ đó suy ra BE là đường cao thứ ba của tam giác.

Giải chi tiết

a) Xét \(\Delta ABE\) vuông tại \(A\) và \(\Delta HBE\) vuông tại \(H\), ta có:
\(BE\) là cạnh chung

\(BA = BH\left( {gt} \right)\)

\(\; \Rightarrow \Delta ABE = \Delta HBE\left( {ch - cgv} \right)\)

b) Vì \(\Delta ABE = \Delta HBE\left( {cmt} \right)\)
Suy ra: \(AE = EH\) ( 2 cạnh tương ứng)
Vậy tam giác \(AEH\) cân tại \(E\)

c) Ta có: \(BA = BH\left( {gt} \right)\)
Suy ra: \(B\) nằm trên đường trung trực của \(AH\) (1)
Lại có: \(EA = EH\left( {cmt} \right)\)
Suy ra: E nằm trên đường trung trực của \(AH\left( 2 \right)\)
Từ (1) và (2) suy ra: \(BE\) là đường trung trực của \(AH\)

d) Trong \(\Delta BKC\), ta có:
\(CA \bot AB\left( {gt} \right) \Rightarrow CA\) là đường cao thứ nhất.
\(KH \bot BC\left( {gt} \right) \Rightarrow KH\) là đường cao thứ hai.
Mà \(CA\) và \(KH\) cắt nhau tại \(E\)
\( \Rightarrow \) \(E\) là trực tâm của tam giác \(ABC\)
\( \Rightarrow BE\) là đường cao thứ ba
\( \Rightarrow BE \bot KC\)


Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com