Cho tam giác ABC nhọn, \((AB < AC)\), các đường cao BD, CE cắt nhau tại \(H\). Chứng minha) \(HE \cdot
Cho tam giác ABC nhọn, \((AB < AC)\), các đường cao BD, CE cắt nhau tại \(H\). Chứng minh
a) \(HE \cdot HC = HD \cdot HB\);
b) \(\Delta HDE \sim \Delta HCB\);
c) \(\Delta ADE \sim \Delta ABC\).
Quảng cáo
Từcác trường hợp đồng dạng của tam giác đã học suy ra: Hai tam giác vuông đồng dạng nếu có một trong các điều kiện:
+ Một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia;
+ Hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.
+ Trường hợp đồng dạng đặc biệt: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đồng dạng.
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











