Số lượng các giá trị nguyên của tham số \(m \in \left[ { - 25;25} \right]\) để hàm số \(y = {x^3} -
Số lượng các giá trị nguyên của tham số \(m \in \left[ { - 25;25} \right]\) để hàm số \(y = {x^3} - 3{x^2} + mx + 2\) có cực đại và cực tiểu là:
Đáp án đúng là: D
Quảng cáo
Hàm số \(y = a{x^3} + b{x^2} + cx + d{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {a \ne 0} \right)\) có cực đại và cực tiểu \( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












