Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{(x + 1)^2} + {(y - 1)^2} + {(z - 1)^2} = 3\). Có tất
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{(x + 1)^2} + {(y - 1)^2} + {(z - 1)^2} = 3\). Có tất cả bao nhiêu điểm \(M\left( {a;b;c} \right)\) (với \(a,b,c\) là các số nguyên) thuộc mặt phẳng \(\left( {Oyz} \right)\) sao cho tồn tại ít nhất hai tiếp tuyến của \(\left( S \right)\) đi qua \(M\) và hai tiếp tuyến đó vuông góc với nhau?
Đáp án đúng là: D
Quảng cáo
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












