Cho hàm số bậc ba \(f(x)\) có đồ thị như hình vẽ. Hỏi có bao nhiêu giá trị nguyên của tham
Cho hàm số bậc ba \(f(x)\) có đồ thị như hình vẽ. Hỏi có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left[ {f\left( x \right)} \right] = m\) có đúng \(4\) nghiệm phân biệt thuộc đoạn \(\left[ { - 1;2} \right]\)?
Đáp án đúng là: C
Đặt \(t = f\left( x \right)\). Với \(x \in \left[ { - 1;2} \right]\) thì \(t \in \left[ { - 1;3} \right].\)
Với mỗi \(t \in \left\{ { - 1} \right\} \cup \left( {2;3} \right)\) thì tồn tại \(1\) giá trị \(x \in \left[ { - 1;2} \right]\).
Với mỗi \(t \in \left( { - 1;2} \right]\) thì tồn tại \(2\) giá trị \(x \in \left[ { - 1;2} \right]\).
Khi đó ta có phương trình \(f\left( t \right) = m\).
Để phương trình ban đầu có \(4\) nghiệm \(x \in \left[ { - 1;2} \right]\) thì phương trình \(f\left( t \right) = m\) có \(2\) nghiệm thuộc \(\left( { - 1;2} \right]\)
\( \Rightarrow - 1 < m \le 2.\)
Mà \(m \in \mathbb{Z}\) nên có \(3\) giá trị của \(m\) thoả mãn yêu cầu bài toán.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com