Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,K\) lần lượt là trung điểm

Câu hỏi số 719978:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\). Gọi \(M\) là trung điểm của \(SB\). Gọi \(F\) là giao điểm của \(DM\) và \((SIK)\). Tính tỉ số \(\dfrac{{MF}}{{MD}}\).

Quảng cáo

Câu hỏi:719978
Phương pháp giải

Chứng minh \((SIK) \cap (SBD) = Sx,({\rm{ }}Sx{\rm{//}}BD{\rm{//}}IK){\rm{. }}\)Suy ra \(SF{\rm{//}}BD\). Sau đó áp dụng định lý Thales

Giải chi tiết

-Ta có \(S \in (SIK) \cap (SAC)\).

Trong mặt phẳng \((ABCD)\), gọi \(E = IK \cap AC \Rightarrow \left\{ {\begin{array}{*{20}{l}}{E \in IK \subset (SIK)}\\{E \in AC \subset (SAC)}\end{array} \Rightarrow E \in (SIK) \cap (SAC)} \right.\).

Suy ra \(SE = (SIK) \cap (SAC)\).

\({\rm{ Ta có  }}\left\{ {\begin{array}{*{20}{l}}{S \in (SIK) \cap (SBD)}\\{BD \subset (SBD),IK \subset (SIK) \Rightarrow (SIK) \cap (SBD) = Sx,({\rm{ }}Sx{\rm{//}}BD{\rm{//}}IK){\rm{. }}}\\{BD{\rm{//}}IK}\end{array}} \right.\)

-Trong mặt phẳng \((SBD)\), gọi \(F = Sx \cap DM \Rightarrow \left\{ {\begin{array}{*{20}{l}}{S \in DM}\\{S \in Sx \subset (SIK)}\end{array} \Rightarrow F = DM \cap (SIK)} \right.\).

Ta có \(SF{\rm{//}}BD \Rightarrow \dfrac{{MF}}{{MD}} = \dfrac{{MS}}{{MB}} = 1\).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com