Hàm số \(y = \dfrac{{\sqrt {{x^2} + 2x + 3} }}{x}\) có đạo hàm \(y' = \dfrac{{ax +
Hàm số \(y = \dfrac{{\sqrt {{x^2} + 2x + 3} }}{x}\) có đạo hàm \(y' = \dfrac{{ax + b}}{{{x^2}\sqrt {{x^2} + 2x + 3} }}\). Tìm \(\max \left\{ {a,b} \right\}.\)
Đáp án đúng là:
Quảng cáo
Sử dụng quy tắc tính đạo hàm \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - uv'}}{{{v^2}}}\).
Đáp án cần điền là: -1
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












