Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số hạng không chứa x trong khai triển \({\left( {{x^2} + \dfrac{2}{x}} \right)^6}\)

Câu hỏi số 726425:
Thông hiểu

Tìm số hạng không chứa x trong khai triển \({\left( {{x^2} + \dfrac{2}{x}} \right)^6}\)

Đáp án đúng là: 240

Quảng cáo

Câu hỏi:726425
Phương pháp giải

Áp dụng nhị thức Newton

Giải chi tiết

+ Số hạng tổng quát của \({\left( {{x^2} + \dfrac{2}{x}} \right)^6}\) là: \(T_{k + 1}^{} = C_6^k.{({x^2})^{6 - k}}{\left( {\dfrac{2}{x}} \right)^k} = C_6^k.{x^{12 - 3k}}{.2^k}\)

+ Số hạng không chứa x ứng với: \({x^{12 - 3k}} = {x^0} \Rightarrow k = 4\)

+ Vậy số hạng không chứa x là: \(C_6^4{.1.2^4}=240\)

Đáp án cần điền là: 240

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com