Cho \(a + b + c = 0\). Chứng minh: \(\left( {\dfrac{{a - b}}{c} + \dfrac{{b - c}}{a} + \dfrac{{c - a}}{b}}
Cho \(a + b + c = 0\). Chứng minh: \(\left( {\dfrac{{a - b}}{c} + \dfrac{{b - c}}{a} + \dfrac{{c - a}}{b}} \right)\left( {\dfrac{c}{{a - b}} + \dfrac{a}{{b - c}} + \dfrac{b}{{c - a}}} \right) = 9\) với \((a,b,c \ne 0;a \ne b,b \ne c,c \ne a)\)
Quảng cáo
Đặt \(\dfrac{{a - b}}{c} = x,\,\,\dfrac{{b - c}}{a} = y,\,\,\dfrac{{c - a}}{b} = z\,\,\left( {x,\,\,y,\,\,z \ne 0} \right)\)
Khi đó \(\dfrac{c}{{a - b}} = \dfrac{1}{x},\,\,\dfrac{a}{{b - c}} = \dfrac{1}{y},\,\,\dfrac{b}{{c - a}} = \dfrac{1}{z}\)
Bài toán trở thành chứng minh \(\left( {x + y + z} \right)\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 9\)
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










