Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(F\left( x \right)\) là họ nguyên hàm của hàm số \(f\left( x \right) =

Câu hỏi số 768382:
Thông hiểu

Cho \(F\left( x \right)\) là họ nguyên hàm của hàm số \(f\left( x \right) = {\rm{sin}}x - {\rm{cos}}x + \dfrac{2}{{{\rm{co}}{{\rm{s}}^2}x}},F\left( 0 \right) = 1\). Giá trị \(F\left( \pi  \right)\) bằng bao nhiêu?

Đáp án đúng là: 3

Quảng cáo

Câu hỏi:768382
Phương pháp giải

Cách 1: Tính nguyên hàm từ đo tính \(F\left( \pi  \right)\)

Cách 2: \(\int\limits_0^\pi  {\left( {{\rm{sin}}x - {\rm{cos}}x + \dfrac{2}{{{\rm{co}}{{\rm{s}}^2}x}}} \right)} dx = F\left( \pi  \right) - F\left( 0 \right)\) và dùng casio

Giải chi tiết

Ta có \(F\left( x \right) = \mathop \smallint \nolimits^ f\left( x \right){\rm{d}}x = \mathop \smallint \nolimits^ \left( {{\rm{sin}}x - {\rm{cos}}x + \dfrac{2}{{{\rm{co}}{{\rm{s}}^2}x}}} \right){\rm{d}}x =  - {\rm{cos}}x - {\rm{sin}}x + 2{\rm{tan}}x + C\)

Mà \(F\left( 0 \right) = 1 \Rightarrow  - {\rm{cos}}0 - {\rm{sin}}0 + 2{\rm{tan}}0 + C = 1 \Leftrightarrow C = 2 \Rightarrow F\left( x \right) =  - {\rm{cos}}x - {\rm{sin}}x + 2{\rm{tan}}x + 2\)

\( \Rightarrow F\left( \pi  \right) =  - {\rm{cos}}\pi  - {\rm{sin}}\pi  + 2{\rm{tan}}\pi  + 2 = 3\).

Đáp số: 3

Đáp án cần điền là: 3

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com