Dựa vào thông tin dưới đây để trả lời các câu sauCho hàm số $y = f(x)$ có đồ thị hàm số
Dựa vào thông tin dưới đây để trả lời các câu sau
Cho hàm số $y = f(x)$ có đồ thị hàm số $f'(x)$ như hình vẽ.

Trả lời cho các câu 1, 2, 3 dưới đây:
Số điểm cực trị của hàm số $y = f(x)$ là
Đáp án đúng là: B
Dựa vào đồ thị hàm số $f'(x)$, lập bảng biến thiên của hàm số $y = f(x)$ rồi kết luận cực trị.
Đáp án cần chọn là: B
Hàm số $y = f\left( {x^{2} - 2} \right)$ nghịch biến trên khoảng nào trong các khoảng dưới đây?
Đáp án đúng là: A
Sử dụng định lý quan hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm: Cho hàm số $y = f(x)$ có đạo hàm trên K. Nếu $f'(x) > 0,\,\forall x \in K$ thì hàm số $y = f(x)$ đồng biến trên K. Nếu $f'(x) < 0,\,\forall x \in K$ thì hàm số $y = f(x)$ nghịch biến trên K.
Đáp án cần chọn là: A
Giá trị lớn nhất của hàm số $g(x) = f(x) - \dfrac{1}{3}x^{3} + x - 1$ trên đoạn $\left\lbrack {- 1;2} \right\rbrack$ bằng
Đáp án đúng là: B
Lập bảng biến thiên của hàm số $g(x)$ trên đoạn $\left\lbrack {- 1;2} \right\rbrack$ rồi kết luận giá trị lớn nhất của $g(x)$ trên đoạn $\left\lbrack {- 1;2} \right\rbrack$
Đáp án cần chọn là: B
Quảng cáo
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com
















