Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một cái bình cổ có hình dạng như hình 1. Giả sử mô hình

Câu hỏi số 790145:
Vận dụng

Một cái bình cổ có hình dạng như hình 1. Giả sử mô hình toán mô phỏng việc tạo thành cái bình cổ đó bằng cách xoay phần diện tích (gạch sọc) được giới hạn bởi đường cong $f(x) = x^{2} - 8x + 12$ và $g(x) = - x + 6$ quanh trục $Ox$ như hình 2. Thể tích của cái bình cổ đó bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).

Đáp án đúng là:

Quảng cáo

Câu hỏi:790145
Phương pháp giải

Tìm giao điểm của hai hàm số. Từ đó tính thể tích bằng tích phân

Giải chi tiết

Xét đồ thị hàm số $h(x) = - f(x)$ có đồ thị là đường nét đứt đoạn như hình vẽ.

Hoành độ giao điểm của đồ thị hàm số $g(x)$ và $h(x)$ là nghiệm của phương trình $\left. - x^{2} + 8x - 12 = - x + 6\Leftrightarrow x^{2} - 9x + 18 = 0\Leftrightarrow\left\lbrack \begin{array}{l} {x = 3} \\ {x = 6} \end{array} \right. \right.$.

Thể tích bình là

\(\begin{array}{*{20}{l}}{V = \pi \int\limits_3^6 {\left[ {{{\left( { - {x^2} + 8x - 12} \right)}^2}} \right]} dx + \pi \int\limits_1^3 {{{( - x + 6)}^2}} dx - \pi \int\limits_1^2 {{{\left( {{x^2} - 8x + 12} \right)}^2}} dx}\\{\; = \dfrac{{153}}{5}\pi {\rm{\;}} + \dfrac{{98}}{3}\pi {\rm{\;}} - \dfrac{{113}}{{15}}\pi {\rm{\;}} = \dfrac{{836}}{{15}}\pi {\rm{\;}} \approx 175}\end{array}\)

Đáp án cần điền là: 175

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com