Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm mệnh đề sai trong các mệnh đề sau: 

Câu hỏi số 177214:
Thông hiểu

Tìm mệnh đề sai trong các mệnh đề sau: 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:177214
Phương pháp giải

Kiểm tra từng đáp án; sử dụng tính đồng biến; nghịch biến của hàm số mũ và hàm logarit.

Giải chi tiết

Dựa vào đáp án, ta thấy

\(\left( {{2^{3 - x}}} \right)' =  - {2^{3 - x}}.\ln 2 < 0,\forall x \in R \Rightarrow \) Hàm số \(y = {2^{3 - x}}\) nghịch biến trên R.

\(\left[ {{{\log }_2}\left( {{x^2} + 1} \right)} \right]' = {{2x} \over {\left( {{x^2} + 1} \right)\ln 2}} > 0 \Leftrightarrow x > 0 \Rightarrow \) Hàm số \(y = {\log _2}\left( {{x^2} + 1} \right)\) không đồng biến trên R.

\(\left[ {y = {{\log }_{{1 \over 2}}}\left( {{x^2} + 1} \right)} \right]' =  - {{2x} \over {\left( {{x^2} + 1} \right)\ln 2}}\) nên y’ đổi dấu từ dương sang âm khi qua điểm \(x = 0\) nên hàm số \(y = {\log _{{1 \over 2}}}\left( {{x^2} + 1} \right)\)đạt cực đại tại \(x = 0\)

\(y = {2^x} + {2^{2 - x}} = {2^x} + {4 \over {{2^x}}} \ge 2\sqrt {{2^x}.{4 \over {{2^x}}}}  = 4 \Rightarrow \min y = 4 \, \Rightarrow \) Giá trị nhỏ nhất của hàm số là 4

Chọn B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com