Tìm m để \(({C_m})\) : \(y = {x^4} - 2m{x^2} + 2\) có 3 điểm cực trị là 3 đỉnh của một tam giác
Tìm m để \(({C_m})\) : \(y = {x^4} - 2m{x^2} + 2\) có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.
Đáp án đúng là: C
Quảng cáo
+) Hàm số có 3 điểm cực trị thì phương trình \(y'=0\) có 3 nghiệm phân biệt.
+) Xác định tọa độ của 3 điểm phân biệt A, B, C đó.
+) Giả sử tam giác ABC vuông cân tại A thì \(\overrightarrow {AB} .\overrightarrow {AC} = 0.\)
Từ đó tìm \(m.\)
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












