Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right)\left( {{x^2} - 2}

Câu hỏi số 189604:
Nhận biết

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right)\left( {{x^2} - 2} \right)\left( {{x^4} - 4} \right)\). Số điểm cực trị của hàm số \(y = f\left( x \right)\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:189604
Phương pháp giải

Số cực trị của hàm số là số nghiệm của phương trình \(f'(x)=0\) với nghiệm đó không là nghiệm bội chẵn.

Giải chi tiết

Ta có: \(f'\left( x \right) = 0\)

\(\eqalign{
& \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2} \right)\left( {{x^4} - 4} \right) = 0 \cr
& \Leftrightarrow \left( {x - 1} \right){\left( {{x^2} - 2} \right)^2}\left( {{x^2} + 2} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = \sqrt 2 \hfill \cr
x = - \sqrt 2 \hfill \cr} \right. \cr} \)

Một điểm được gọi là cực trị của hàm số khi đạo hàm của hàm số đổi dấu qua điểm đó.

Ta nhận thấy đạo hàm của hàm số chỉ đổi dấu khi \(x=1\) và không đổi dấu khi \(x =  \pm \sqrt 2 \).

Vậy hàm số có 1 điểm cực trị.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com