Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Rút gọn biểu thức: \(P = \dfrac{{{b^{\frac{1}{5}}}\left( {\sqrt[5]{{{b^4}}} - \sqrt[5]{{{b^{ - 1}}}}}

Câu hỏi số 192069:
Vận dụng

Rút gọn biểu thức: \(P = \dfrac{{{b^{\frac{1}{5}}}\left( {\sqrt[5]{{{b^4}}} - \sqrt[5]{{{b^{ - 1}}}}} \right)}}{{{b^{\frac{2}{3}}}\left( {\sqrt[3]{b} - \sqrt[3]{{{b^{ - 2}}}}} \right)}}.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:192069
Phương pháp giải

Sử dụng công thức \({a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\) và \(a^m.a^n=a^{m+n}\)  sau đó biến đổi và rút gọn biểu thức.

Giải chi tiết

Ta có: \(P = \dfrac{{{b^{\frac{1}{5}}}\left( {\sqrt[5]{{{b^4}}} - \sqrt[5]{{{b^{ - 1}}}}} \right)}}{{{b^{\frac{2}{3}}}\left( {\sqrt[3]{b} - \sqrt[3]{{{b^{ - 2}}}}} \right)}} = \dfrac{{{b^{\frac{1}{5} + \frac{4}{5}}} - {b^{\frac{1}{5} - \frac{1}{5}}}}}{{{b^{\frac{2}{3} + \frac{1}{3}}} - {b^{\frac{2}{3} - \frac{2}{3}}}}} = \dfrac{{b - 1}}{{b - 1}} = 1.\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com