Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy \(ABCD\) là nửa lục giác đều nội tiếp đường tròn đường kính

Câu hỏi số 193122:
Vận dụng

Cho hình chóp S.ABCD có đáy \(ABCD\) là nửa lục giác đều nội tiếp đường tròn đường kính \(AB = 2a,SA = a\sqrt 3 \) và vuông góc với mặt phẳng ABCD. Cosin góc giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:193122
Phương pháp giải

+) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBC)

+) Trong \(\left( {SAE} \right)\) kẻ \(DF \bot SE\)

+) Chứng minh DF và BF cùng vuông góc với giao tuyến.

Giải chi tiết

Gọi \(E = AD \cap BC\)
Vì ABCD là nửa lục giác đều nội tiếp đường tròn đường kính AB
nên \(\widehat {ADB} = {90^0} \Rightarrow AD \bot DB\)
Mà \(SA \bot DB\)
\( \Rightarrow DB \bot \left( {SAD} \right) \Rightarrow DB \bot SE\)
Trong \(\left( {SAE} \right)\) kẻ \(DF \bot SE\)
\( \Rightarrow SE \bot \left( {BDF} \right) \Rightarrow SE \bot BF\)
Ta có: \(\left. \begin{array}{l}\left( {SAD} \right) \cap \left( {SBC} \right) = SE\\DF \bot SE\\BF \bot SE\end{array} \right\} \Rightarrow \widehat {\left( {\left( {SAD} \right);\left( {SBC} \right)} \right)} = \widehat {\left( {DF;BF} \right)} = \widehat {BFD}\)

(vì \(\widehat {BFD} < {90^0}\))

Vì \(DB \bot \left( {SAD} \right) \Rightarrow DB \bot DF \Rightarrow \Delta BDF\)vuông tại D

Xét tam giác vuông ABD có: \(BD = \sqrt {A{B^2} - A{D^2}}  = \sqrt {4{a^2} - {a^2}}  = a\sqrt 3 \)

\(\Delta EAB\) đều nên \(AE = BE = AB = 2a \Rightarrow SE = \sqrt {S{A^2} + A{E^2}}  = \sqrt {3{a^2} + 4{a^2}}  = a\sqrt 7 \)

D là trung điểm của AE nên \(AD = \frac{1}{2}AE = a\)

Ta có: \(\Delta EDF \sim \Delta ESA\left( {g.g} \right) \Rightarrow \dfrac{{DF}}{{SA}} = \dfrac{{DE}}{{SE}} \Rightarrow DF = \dfrac{{SA.DE}}{{SE}} = \dfrac{{a\sqrt 3 .a}}{{a\sqrt 7 }} = \dfrac{{a\sqrt 3 }}{{\sqrt 7 }}\)

\( \Rightarrow BF = \sqrt {D{F^2} + B{D^2}}  = \sqrt {\dfrac{3}{7}{a^2} + 3{a^2} = } \dfrac{{2\sqrt 6 a}}{{\sqrt 7 }}\)

Vậy \(cos\widehat {BFD} = \dfrac{{DF}}{{BF}} = \dfrac{{\dfrac{{a\sqrt 3 }}{{\sqrt 7 }}}}{{\dfrac{{2\sqrt 6 a}}{{\sqrt 7 }}}} = \dfrac{{\sqrt 2 }}{4}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com