Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \sqrt {1 - 2x\sqrt {1 - {x^2}} } \) với \(x \in \left[ {0;\dfrac{{\sqrt 2 }}{2}}

Câu hỏi số 209471:
Vận dụng

Cho hàm số \(f\left( x \right) = \sqrt {1 - 2x\sqrt {1 - {x^2}} } \) với \(x \in \left[ {0;\dfrac{{\sqrt 2 }}{2}} \right]\). Biết rằng \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\). F(x) bằng ?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:209471
Giải chi tiết

Đặt \(x = \sin t \Leftrightarrow {\rm{d}}x = \cos t\,{\rm{d}}t\) và \(\sqrt {1 - {x^2}}  = \sqrt {1 - {{\sin }^2}t}  = \cos t.\)

Khi đó :

\(\begin{array}{l}
\int {f\left( x \right){\mkern 1mu} {\mkern 1mu} dx} = \int {\sqrt {1 - 2\sin t.\cos t} .\cos t{\mkern 1mu} {\mkern 1mu} dt} \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \int {\sqrt {{{\sin }^2}t - 2\sin t\cos t + {{\cos }^2}t} .\cos t{\mkern 1mu} {\rm{d}}t} = \int {\left| {\sin t - \cos t} \right|.\cos t{\mkern 1mu} {\mkern 1mu} {\rm{d}}t}
\end{array}\)

Ta có : \(x \in \left[ {0;\dfrac{{\sqrt 2 }}{2}} \right] \Rightarrow t \in \left[ {0;\dfrac{\pi }{4}} \right] \Rightarrow \sin t < \cos t\,\forall t \in \left[ {0;\dfrac{\pi }{4}} \right] \Rightarrow \sin t - \cos t < 0\)

\(\eqalign{  &  \Rightarrow F\left( x \right) = \int {\left( {\cos t - \sin t} \right).\cos t\,\,{\rm{d}}t}  = \int {\left( {{{\cos }^2}t - \sin t.\cos t} \right)\,\,{\rm{d}}t} .  \cr  &  = \int {{{1 + \cos 2t} \over 2}\,{\rm{d}}t}  - {1 \over 2}\int {\sin 2t\,{\rm{dt}}}  = {1 \over 2}\left( {t + {{\sin 2t} \over 2}} \right) + {1 \over 2}{{\cos 2t} \over 2} + C  \cr  &  = {t \over 2} + {{\sin 2t + cos2t} \over 4} + C \cr} \)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com