Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

(1,5đ) Rút gọn các phân  thức sau: a) \(A = \dfrac{{3\left| {x - 2} \right| - 5\left| {x - 6}

Câu hỏi số 210582:
Vận dụng

(1,5đ) Rút gọn các phân  thức sau:

a) \(A = \dfrac{{3\left| {x - 2} \right| - 5\left| {x - 6} \right|}}{{4{x^2} - 36{\text{x}} + 81}}\)  với \(2 < x < 6\).

b) \(B = \dfrac{{x|x - 2|}}{{{x^3} - 5{x^2} + 6x}}\)

Quảng cáo

Câu hỏi:210582
Giải chi tiết

Hướng dẫn giải chi tiết:

a)         \(A = \dfrac{{3\left| {x - 2} \right| - 5\left| {x - 6} \right|}}{{4{x^2} - 36{\text{x}} + 81}}\)  với \(2 < x < 6\).

Với \(2 < x < 6 \Rightarrow x - 2 > 0\) và \(x - 6 < 0.\)

\( \Rightarrow |x - 2| = x - 2\) và  \(|x - 6| = 6 - x.\)

\(A = \dfrac{{3\left| {x - 2} \right| - 5\left| {x - 6} \right|}}{{4{x^2} - 36{\text{x}} + 81}} = \dfrac{{3(x - 2) - 5(6 - x)}}{{{{(2x - 9)}^2}}} = \dfrac{{3x - 6 - 30 + 5x}}{{{{(2x - 9)}^2}}} = \dfrac{{8x - 36}}{{{{(2x - 9)}^2}}} = \dfrac{{4(2x - 9)}}{{{{(2x - 9)}^2}}} = \dfrac{4}{{2x - 9}}.\)

b)      \(B = \dfrac{{x|x - 2|}}{{{x^3} - 5{x^2} + 6x}} = \dfrac{{x|x - 2|}}{{x({x^2} - 5x + 6)}} = \dfrac{{x|x - 2|}}{{x({x^2} - 2x - 3x + 6)}} = \dfrac{{x|x - 2|}}{{x{\text{[}}x(x - 2) - 3(x - 2){\text{]}}}} = \dfrac{{x|x - 2|}}{{x(x - 2)(x - 3)}}\) .

Nếu \(x - 2 \geqslant 0 \Leftrightarrow x \geqslant 2\) thì \(|x - 2| = x - 2 \Rightarrow B = \dfrac{{x(x - 2)}}{{x(x - 2)(x - 3)}} = \dfrac{1}{{x - 3}}.\)

Nếu \(x - 2 < 0 \Leftrightarrow x < 2\) thì \(|x - 2| = 2 - x \Rightarrow B = \dfrac{{x(2 - x)}}{{x(x - 2)(x - 3)}} = \dfrac{{x(x - 2)}}{{x(x - 2)(3 - x)}} = \dfrac{1}{{3 - x}}.\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com