Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện ABCD. MNPQ lần lượt là trung điểm AC, BC, BD, AD. Tìm điều kiện để MNPQ là hình

Câu hỏi số 211055:
Vận dụng

Cho tứ diện ABCD. MNPQ lần lượt là trung điểm AC, BC, BD, AD. Tìm điều kiện để MNPQ là hình thoi?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:211055
Phương pháp giải

Đưa về cùng mặt phẳng.

- Sử dụng các tính chất đường trung bình của tam giác

- Các dấu hiệu nhận biết hình bình hành, hình thoi.

Giải chi tiết

Vì MN và PQ lần lượt là đường trung bình của tam giác ABC và ABD nên:

\(\left\{ \matrix{MN//PQ//AB \hfill \cr MN = PQ = {1 \over 2}AB \hfill \cr} \right. \Rightarrow \) MNPQ là hình bình hành.

Để MNPQ trở thành hình thoi ta cần thêm yếu tố MN = PN.

Ta có: PN là đường trung bình của tam giác BCD nên \(PN = {1 \over 2}CD\).

MN = PN \( \Leftrightarrow {1 \over 2}AB = {1 \over 2}CD \Leftrightarrow AB = CD.\)

Vậy để MNPQ là hình thoi cần thêm điều kiện AB = CD.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com