Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Nếu đặt \(\left\{ \matrix{  u = \ln \left( {x + 2} \right) \hfill \cr   {\rm{d}}v = x\,{\rm{d}}x \hfill \cr}  \right.\) thì tích phân \(I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} \) trở thành

Câu 211306: Nếu đặt \(\left\{ \matrix{  u = \ln \left( {x + 2} \right) \hfill \cr   {\rm{d}}v = x\,{\rm{d}}x \hfill \cr}  \right.\) thì tích phân \(I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} \) trở thành

A. \(I = \left. {{{{x^2}\ln \left( {x + 2} \right)} \over 2}} \right|_0^1 - {1 \over 2}\int\limits_0^1 {{{{x^2}} \over {x + 2}}{\rm{d}}x} .\)

B. \(I = \left. {{x^2}\ln \left( {x + 2} \right)} \right|_0^1 - {1 \over 4}\int\limits_0^1 {{{{x^2}} \over {x + 2}}{\rm{d}}x} .\)

C. \(I = \left. {{{{x^2}\ln \left( {x + 2} \right)} \over 2}} \right|_0^1 + \int\limits_0^1 {{{{x^2}} \over {x + 2}}{\rm{d}}x} .\)

D. \(I = \left. {{{{x^2}\ln \left( {x + 2} \right)} \over 4}} \right|_0^1 - {1 \over 4}\int\limits_0^1 {{{{x^2}} \over {x + 2}}{\rm{d}}x} .\)

Câu hỏi : 211306
  • Đáp án : A
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Phương pháp: Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

    Cách giải.

    Đặt \(\left\{ \matrix{  u = \ln \left( {x + 2} \right) \hfill \cr   {\rm{d}}v = x\,{\rm{d}}x \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {\rm{d}}u = {{{\rm{d}}x} \over {x + 2}} \hfill \cr   v = {{{x^2}} \over 2} \hfill \cr}  \right.,\) khi đó \(I = \left. {{{{x^2}\ln \left( {x + 2} \right)} \over 2}} \right|_0^1 - {1 \over 2}\int\limits_0^1 {{{{x^2}} \over {x + 2}}{\rm{d}}x} .\)

    Chọn A.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com