Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(a+b+c=0\), rút gọn biểu thức: \(B={{a}^{3}}+{{b}^{3}}+c\left( {{a}^{2}}+{{b}^{2}} \right)-abc\)

Câu hỏi số 211597:
Vận dụng cao

Cho \(a+b+c=0\), rút gọn biểu thức: \(B={{a}^{3}}+{{b}^{3}}+c\left( {{a}^{2}}+{{b}^{2}} \right)-abc\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:211597
Giải chi tiết

Hướng dẫn giải chi tiết:

\(\begin{array}{l}B = {a^3} + {b^3} + c\left( {{a^2} + {b^2}} \right) - abc\\B = {a^2}.a + {b^2}.b + c.{a^2} + c.{b^2} - abc\\B = ({a^2}.a + c.{a^2}) + \left( {{b^2}.b + c.{b^2}} \right) - abc\\B = {a^2}\left( {a + c} \right) + {b^2}\left( {b + c} \right) - abc\;\;(1)\end{array}\)

Mà a + b + c = 0 nên ta có:

\(\left\{ \begin{array}{l}a + c = - b\\b + c = - a\end{array} \right.\) (2)

Thế (2) vào (1) ta có:

\(B = {a^2}\left( { - b} \right) + {b^2}\left( { - a} \right) - abc \\=  - {a^2}b - a{b^2} - abc \\=  - ab.a - ab.b - ab.c \\=  - ab(a + b + c)\\=  - ab.0 = 0\)

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com